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 Global warming is intensifying the impact of climate change on agricultural productivity. This study 
aims to assess the relationship between non-climatic and climatic variables like the area under 
cultivation, fertilizer consumption, tractor and tube well, and average minimum and maximum 
temperature, wind, and precipitation, and the effects of these variables on agricultural productivity 
between 1991 and 2021, in Punjab Pakistan. In the first phase, we used the unit root tests to verify 
that the panel data was stationary. A Fixed Effects model was employed to identify the dynamic 
linkages of climatic and non-climatic factors with agricultural productivity. The outcomes of the 
study revealed that temperature and precipitation have a diverse impact on productivity. While the 
cultivated area and fertilizer consumption have a positive and significant impact on agricultural 
productivity. The empirical findings also showed that in comparison to non-climatic factors, 
climatic parameters—such as average maximum temperature—have a greater impact on 
productivity. Few recommendations are offered to deal with the effects of climate change based on 
the study's findings. Create such agriculture-specific adaptation plans for farmers who are resilient 
and capable of addressing climate change. Agriculture-related research and development ought to 
concentrate on key temperature-tolerant food crop varieties. Because of these tactics, the 
agriculture sector will be able to maintain long-term production and distribution efficiency. 
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INTRODUCTION 

The term "climate" refers specifically to the state of the global 

environment as it is expressed through fluctuations in humidity, 

rainfall, and temperature. Thus, "climate change" refers to a 

change in the environment brought about by human activity and 

natural processes (Nath and Mandal 2018; Chandio et al., 

2020a). Due to its long-term detrimental effects on food 

production, rural poverty livelihoods, water supplies, and 

agricultural productivity, climate change has drawn the 

attention of environmentalists and policymakers worldwide 

since the 1990s (Chavas et al., 2009; Below et al., 2010; Mohorji 

et al., 2017). 

The cause of climate change is an increase in human activity on the 

land, such as land usage, deforestation, urbanization, population 

growth, and production and consumption activities to meet the 

need for food. The environment is always changing due to factors 

including global temperature, precipitation, and carbon emissions, 

which have a significant impact on agricultural productivity and 

development (Chandio et al., 2021a; Klutse et al., 2021). The 

primary causes of climate change, such as increased temperatures 

and precipitation, have resulted in a decline in agricultural 

production (Haile et al., 2017). The atmosphere's rising carbon 

concentration, mostly from the industrialized world's increased 

output, is to blame for the temperature's steady rise. However, the 

developing country, which is located in a tropical location and 

mostly depends on the agriculture sector, is primarily affected by 

rising temperatures, fluctuating rainfall, and frequent floods and 

droughts (Janjua et al., 2014).  

In addition to being vulnerable to climate change, agriculture and 

its related industries also contribute to carbon emissions 

(Swaminathan and Kesavan, 2012). The production of agriculture 

is negatively impacted by climate change, and small and medium-

sized farmers who primarily rely on agriculture and related 

industries for their livelihoods are more vulnerable (Zakaria et al., 

2020). The effects of climate change may differ depending on one's 

geographic position from one region to another. While it improves 

agricultural output in affluent nations, it worsens the situation for 

the agricultural sector in underdeveloped nations (Nath and 

Behera, 2011; Janjua et al., 2014; Abbas, 2020).  

Similarly, Abbas et al. (2022b) found that South Asia's food security 

and crop productivity have been greatly impacted by climate change 

throughout time. According to Swaminathan and Kesavan (2012), 

there has been a negative impact on food production due to climate 

change, and the primary food-producing areas may shift in position. 

Due to their greater reliance on the agricultural sector for a living, 

their lack of technical innovation, and their lack of strategies to 

adapt to climate change and its effects on agriculture production, 

poor nations are more vulnerable than developed ones (Praveen 

and Sharma, 2020; Warsame, 2021). However, according to Chandio 

et al. (2021b), Pakistan's cereal output is impacted both positively 

and negatively by rising temperatures and financial development, 

respectively. However, Ahsan et al. (2020) showed that CO2 has a 

beneficial impact on agricultural productivity and that the primary 

determinants of agriculture productivity are labor force, cultivated 

area, energy consumption, and CO2. Similarly, Warsame (2021) 

clarified how Somalia's agricultural productivity has been adversely 
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affected by CO2 and mean temperature. In a similar vein, Coulibaly 

et al. (2020) determined that the primary factors adversely affecting 

agricultural productivity are temperature and drought. 

Other empirical studies discovered that climate change is 

negatively affecting agricultural productivity and predicted a very 

alarming situation in the coming days (Tubiello et al., 1995; 

Mendelsohn and Dinar, 1999; Chang, 2002; Tubiello et al., 2002; 

Luo et al., 2003; Ludwig and Asseng, 2006; Lobell and Field, 2007; 

You et al., 2009). Hanif et al. (2010) concluded that the impact of 

climate change varies by season (Rabi and Kharif) in Punjab. 

According to Suryabhagavan (2017) and Getachew et al. (2021), 

changes in the timing of monsoon seasons, as well as increased 

frequency of extreme weather events (floods and droughts), can 

have a significant impact on crop productivity. According to 

Ahmad et al. (2020), a 3.4◦C rise in maximum temperature and 

3.8◦C rise in minimum temperature under hot/dry circumstances 

(RCP8.5) will result in a 28% decline in current productivity and a 

29% decrease in future production by the mid-century (2050). 

The rise in temperature had a detrimental influence on wheat 

yield in the short run, but a favorable effect in the long term. 

Increased precipitation has a negative impact on both runs. Both 

climate variables have a negative impact on cotton yield. 

Increased temperature has a negative impact on sugarcane 

productivity as well. Maize production is particularly vulnerable 

to drought stress and climate variability (Hafiza et al., 2022; Dahri 

et al., 2024), with changes in temperature and precipitation 

responsible for shortening the growing season and reducing 

yields (Ahmed et al., 2018; Osman et al., 2022). 

Climate change adaptation is critical to agricultural sustainability. 

The most sustainable and environmentally friendly technique for 

mitigating the impacts of heat stress is to develop heat-tolerant 

wheat cultivars from a variety of genetic origins. Two essential 

adaptive procedures in heat-prone areas are cultivar selection and 

sowing date changes. The plant will undergo morphological 

changes to overcome the combined effects of heat and drought 

stress. The quick ground cover prevents water evaporation from 

the soil beneath the plant canopy. This enhances water availability 

for evapotranspiration and keeps the plant canopy cool during 

heat stress (Shashikumara et al., 2022). Crop diversification in 

location (substituting one crop for another) and time (changing 

crop rotation or cropping system) can be a reasonable and cost-

effective strategy for increasing agricultural system resilience to 

climate change. The more diverse the agricultural systems, the 

better they are at improving food and nutritional security in the 

face of climate change. When planted in combinations of resistant 

types over broad expanses of land, had 89% higher yield and 94% 

less fungal blast incidence than when planted in monoculture 

(Aryal et al., 2020). 

Considering the intricate relationship that exists between crop 

output and climate change, addressing climate change and its 

effects on agricultural productivity is a difficult task. Numerous 

earlier research has examined the effects of rising temperatures 

and shifting rainfall patterns during the twenty-first century using 

a variety of climate models (Bhatla et al., 2019).  The current study 

employs the Random Effects technique to examine the dynamic 

relationship between agricultural productivity and both climatic 

and non-climatic factors across various districts in Punjab, 

Pakistan. 

According to a study of the literature, the majority of research has 

looked at CO2 emissions as a sign of environmental deterioration 

and climate change. A few studies that look at the effects of 

increased average annual temperature on certain crop output had 

varied results. Pakistan cultivates a wide range of crops, and 

further research is required to determine the overall impact of 

varying the average yearly temperature in addition to other 

explanatory factors on the performance of main food and cash 

crops in terms of production. Thus, the researchers hypothesize 

the following: 

 H1. Agricultural productivity is negatively impacted by climate 

change 

To the best of our knowledge, provincial Punjab has not been the 

subject of a thorough analysis, despite the abundance of studies on 

the impact of climate change on crop productivity. To close this 

gap, the researchers established this scholarship. Figure 1 

illustrates the dynamic relationship between climatic, non-

climatic, and agricultural productivity. 

 

Figure 1. Dynamic connection of climatic and non-climatic factors 
with agriculture production.                

METHODOLOGY 

Study Area 

Pakistan’s province of Punjab (Figure 2) was the subject of the 

study. Punjab is the most populous province and the second 

largest in terms of land area, with 205,345 square kilometres 

(PBS, 2020). Punjab is home to more than half of Pakistan's 

population and generates more than 60% of the country's 

agricultural output. The Punjab province was selected because 

agriculture contributes more than half of the country's gross 

domestic product (GOP, 2022). Punjab province has 36 districts 

for administrative purposes. The Punjab province is located at 

31.17 north latitudes and 72.70 east longitudes (Abbas et al., 

2014). Generally speaking, Punjab province experiences harsh 

winters and lengthy, blistering summers. The monsoon winds in 

Punjab are mostly responsible for rainfall. Punjab province has the 

following climate classifications: extremely arid, arid, dry semi-

arid, wet semi-arid, wet sub-humid, and dry sub-humid, according 

to the Pakistan Meteorological Department. The agricultural 

calendar's two main cropping seasons, Kharif (summer) and Rabi 

(winter) are determined by the combination of seasonal 

temperatures and rainfall. Wheat is a key crop in Rabi, but rice, 

cotton, maize, and sugarcane are major crops in Kharif (Hussain 

and Mudasser, 2007; Naheed and Rasul, 2010).  

 

Figure 2. Punjab province map. 
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Data source 

Cross-sectional time series, or panel data, are used to calculate the 

effects of climatic and non-climatic factors on agricultural 

productivity levels. Nine districts from Punjab are included in the 

panel set for the years 1991–2021. The data sources and 

descriptions are displayed in Table 1. There are two sets of 

variables in the dataset.  

The first category consists of economic factors including total 

cultivated area, total number of tractors, fertilizer used, and 

number of tube wells. The second category is climate variables, 

which include wind, precipitation, and the minimum and 

maximum annual average temperature, make up the second 

group.  

Agricultural productivity is used as a dependent variable. The 

yield of five (5) major crops (Wheat, Rice, Maize, Cotton, and 

Sugarcane) is used as a proxy for agricultural productivity. The 

Pakistan Metrological Department provided the climate data.   

The description, measurement, and data sources of the 

undertaken antecedents are given in Table 1. 

Table 1. The description, measurement, and data sources. 

Sr. 
No. 

Variable Data Source Measurement Units Data 

1. Agricultural productivity (000)tons PDS 

 Non-climatic variables  

2. Cultivated Area  (000)ha PDS 

3. Fertilizer Consumption (000)Nutrient tons PDS 

4. Tractor  Number/Units PDS 

5. Tube well Number/Units PDS 

 Climatic variables  

6. Average Min. Temperature Degrees Celsius PMD 

7. Average Max. Temperature Degrees Celsius PMD 

8. Precipitation Millimeters PMD 

9. Wind Speed (km/h or 
m/s) 

PMD 

*PDS= Punjab Development Statistics; *PMD= Pakistan 
Metrological Department. 

Model Specification 

The current study examined the average minimum and average 

maximum temperature, precipitation, and wind as climatic 

factors, keeping in mind the studies of Ahsan et al. (2020), Kumar 

et al. (2021), Jan et al. (2021), Abbas et al. (2022b), and Gul et al. 

(2022).  Additionally, this study made use of fertilizer, drawing 

from the most recent research conducted by Ali et al. (2021), and 

Chandio et al. (2021b). In addition, the article followed Baig et al. 

(2021), Jan et al. (2021), Abbas et al. (2022a), and Gul et al. (2022) 

in incorporating farmed area, number of tractors, and tubewells. 

To assess the impact of climatic and non-climatic factors on 

agricultural productivity Fixed Effect Regression analysis was 

used for panel data (Edokpayi et al., 2015; Alboghdady and El-

Hendawy, 2016). 

Yit = αi+β1CAit+β2FCit+β3TRit+β4TWit+β5MinTempit+β6MaxTempit

+β7Precipit+β8Windit+ϵit    (1) 

Yit = Agricultural productivity; αi = District-specific fixed effects 

(captures unobserved heterogeneity across districts); β1,β2,…,β8 

= Coefficients for the explanatory variables; CAit = Cultivated area; 

FCit = Fertilizer consumption (in 000 nutrient tons); TRit = 

Number of tractors in the district; TWit = Number of tube wells in 

the district;  MinTempit = Average minimum temperature; 

MaxTempit = Average maximum temperature; Precipit = 

Precipitation (in millimeters); Windit = Wind speed (in km/h or 

m/s);  ϵit = Error term. 

Figure 3 demonstrates the conceptual framework presenting 

climatic and non-climatic factors that may affect agricultural 

productivity. 

 

Figure 3. Conceptual framework of the study. 

RESULTS AND DISCUSSION 

Descriptive Analysis  

Descriptive statistics are used to start the analysis of the study 

(Chandio et al., 2024). It provides a comprehensive summary of 

the vast amount of data. Table 2 presents the findings of the 

descriptive statistics. The dataset includes a wide range of 

agricultural techniques, weather patterns, and resource uses that 

might affect farming productivity and efficiency. It appears that 

agricultural techniques may need to be customized based on local 

conditions, resource availability, and climate variability. This is 

indicated by the high variability in most parameters and the 

evidence of non-normal distributions. Such analyses can support 

decision-making for increased sustainability and productivity. 

Table 2. Descriptive statistics. 

 PRODUCTION AREA FERTILIZER TRACTORS TUBEWELL MIN_TEMP MAX_TEMP PRECIPITATION WIND 

 Mean  120.1154  523.8521  87.47059  10806.65  21640.75  18.24132  33.02118  487.0795  1.320486 

 Median  112.9190  548.5000  84.00000  10163.00  16230.50  18.24000  31.60000  487.0800  1.320000 

 Maximum  206.7900  911.0000  264.0000  38599.00  73804.00  32.10000  445.6200  1651.200  3.300000 

 Minimum  19.99800  92.00000  1.000000  1189.000  619.0000  9.100000  17.90000  3.370000  0.100000 

 Std. Dev.  30.41906  228.9330  60.24163  6493.534  16665.64  1.502275  24.48023  321.4176  0.541417 

 Skewness  0.337313 -0.576366  0.745911  0.916235  1.061465  2.273861  16.70988  0.984024  0.961228 

Jarque-Bera  6.243646  24.36433  27.91585  49.47642  57.07634  10480.63  948503.9  53.25244  90.57410 

 Probability  0.044077  0.000005  0.000001  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 
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Correlation Coefficient Analysis for Selected Variables 

The correlation matrix (Table 3) provides key insights into the 

connections between agricultural productivity and the climatic 

and non-climatic elements that influence it. 

Production and Area have a somewhat positive association 

(0.4689) for non-climatic variables, indicating that increasing the 

amount of land under cultivation generally increases productivity. 

Fertilizer also has a large positive correlation (0.6327), indicating 

that it has a considerable influence on increasing yields. The 

significance of mechanization in enhancing agricultural results is 

highlighted by the strong correlation with tractors (0.7246), 

whilst the smaller connection with tube wells (0.3768) implies 

that irrigation facilities, although advantageous, have differing 

effects on different crops or regions. 

A more nuanced picture emerges from the interaction between 

production and climatic factors. Moderate higher minimum 

temperature may help crops by lowering the risk of frost, 

according to a small positive connection with minimum 

temperature (0.2160). Nonetheless, the moderately negative 

association (-0.3403) with Max Temperature suggests that 

excessive heat can reduce productivity, most likely as a result of 

heat stress. Precipitation also exhibits a moderately negative 

correlation (-0.4401), indicating that too much rainfall could have 

negative consequences like crop disease or waterlogging. In this 

case, wind speed has little direct effect on productivity, as 

evidenced by the weak correlation with wind. 

Other patterns are revealed by the interactions between 

variables. Fertilizer and Max Temperature have a substantial 

positive association (0.7503), which would suggest that warmer 

climates use more fertilizer to counteract nutrient loss. High-

rainfall regions may have less cultivation, perhaps as a result of 

inadequate drainage or inappropriate terrain, according to the 

moderately negative association between precipitation and area 

(-0.5587). 

These results have important ramifications for climate adaptation 

plans and agriculture policy. The need for better access to 

resources and need for climate-smart activities, such as the 

creation of drought-resistant crops and improved drainage 

systems, is highlighted by negative connections with climatic 

elements like precipitation and high temperatures. All things 

considered, the matrix highlights the complexity of agricultural 

productivity and shows how crucial it is to combine 

environmental management with technology breakthroughs in 

order to provide long-term results.  

 

Unit Root test Results for Selected Variables 

The stationary and order of integration of the chosen variables 

were examined in the current study using the augmented 

Dickey-Fuller (ADF) (Dickey and Fuller, 1979) and Phillips–

Perron (PP) (Phillips, 1988) unit root tests. These tests are 

essential for determining if the series become stationary 

following differencing (I(1)) or remains stationary at their levels 

(I(0)). In regression analysis, maintaining stationary is essential 

to avoiding erroneous findings, particularly when dealing with 

time series or panel data. To identify potential deterministic 

trends in the data, trend, and intercept parameters were used for 

both the ADF and PP tests. 

Crop production, average annual minimum and maximum 

temperatures, precipitation, wind speed, farmed area, fertilizer 

use, tractors, and tube wells are among the variables for which the 

unit root test results are shown in Tables 4 and 5. The findings 

show that the variables have varying degrees of integration. While 

some variables only become stationary after the first difference 

(I(1)), others are stationary at their levels (I(0)). 

According to the results, some climatic and non-climatic variables 

are stationary at level (I(0)), including wind speed, precipitation, 

maximum temperature, area, fertilizer use, and precipitation. This 

implies that their variance, covariance, and mean statistical 

characteristics hold steady throughout time, making it possible to 

incorporate them straight into additional modeling. On the other 

hand, variables like minimum temperature, tractors, agricultural 

productivity, and tube wells show non-stationary behavior at their 

levels but turn stationary after the first difference (I(1)), 

suggesting the existence of structural shifts or trends that need to 

be stabilized through differencing. 

The analysis is affected in several ways by these findings. The 

dataset's heterogeneous temporal dynamics are implied by the 

mixed stationary levels. In contrast to economic variables like 

production and tractors, which are impacted by policy changes, 

technological advancements, and other structural factors, climatic 

variables like precipitation and maximum temperature are 

inherently stationary due to their reliance on stable natural 

systems. 

To sum up, the outcomes of the unit root test offer a crucial basis 

for the economic modeling procedure. The study guarantees 

statistical correctness and robustness in examining the dynamic 

relationships between the chosen components and their effects on 

agricultural output by determining the proper transformation for 

each variable. The validity of the study findings and their 

policymaking implications are strengthened by this all-

encompassing methodology.  

 

Hausman’s test 

A statistical technique called the Hausman technique (Tables 6 

and 7) is used to assess whether panel data analysis is better 

served by the Random Effects Model (REM) or the Fixed Effects 

Model (FEM). To determine whether there is a correlation 

between the random effects and the regressors, it analyses the 

coefficient estimates of the two models. With 8 degrees of freedom 

and a p-value of 0.9115, the Hausman test statistic in this instance 

is 3.336294. The null hypothesis, according to which the random 

effects are uncorrelated with the regressors, cannot be rejected if 

the p-value is higher than 0.05. Thus, the Random Effects Model 

would often be seen as reasonable in light of this outcome. 

It is crucial to take note of the caution regarding zero variance in 

random effects, which suggests that the random effects model may 

not be appropriate. This calls into question the random effects 

model's underlying presumptions by indicating that the 

individual-specific effects are not changing substantially. 

Therefore, the Fixed Effects Model is favored in this analysis even 

though the Hausman test suggests that the random effects model 

may be appropriate. Given that random effects have zero variance, 

the fixed effects model makes more sense. This suggests that 

allowing for fixed variations between the cross-sections may 

better capture individual heterogeneity.  

 

Hausman’s test 

A statistical technique called the Hausman technique (Tables 6 

and 7) is used to assess whether panel data analysis is better 

served by the Random Effects Model (REM) or the Fixed Effects 

Model (FEM). To determine whether there is a correlation 

between the random effects and the regressors, it analyses the 

coefficient estimates of the two models. With 8 degrees of freedom 

and a p-value of 0.9115, the Hausman test statistic in this instance 

is 3.336294. The null hypothesis, according to which the random 

effects are uncorrelated with the regressors, cannot be rejected if 

the p-value is higher than 0.05. Thus, the Random Effects Model 

would often be seen as reasonable in light of this outcome. 
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It is crucial to take note of the caution regarding zero variance 

in random effects, which suggests that the random effects 

model may not be appropriate. This calls into question the 

random effects model's underlying presumptions by indicating 

that the individual-specific effects are not changing 

substantially. Therefore, the Fixed Effects Model is favored in 

this analysis even though the Hausman test suggests that the 

random effects model may be appropriate for the analysis.  

Given that random effects have zero variance, the fixed effects 

model makes more sense. This suggests that allowing for fixed 

variations between the cross-sections may better capture 

individual heterogeneity.  

Table 3. Correlation coefficient analysis. 

Correlation PRODUCTION AREA FERTILIZER TRACTORS TUBEWELL MIN_TEMP MAX_TEMP PRECIPITATION WIND 
PRODUCTION  1.000000         
AREA  0.468880  1.000000        
FERTILIZER  0.632703  0.663387  1.000000       
TRACTORS  0.724633  0.679929  0.653512  1.000000      
TUBEWELL  0.376820  0.404210  0.212570  0.656657  1.000000     
MIN_TEMP  0.216013  0.169151  0.290796  0.152088 -0.132846  1.000000    
MAX_TEMP -0.340271  0.581644  0.750334 -0.546247 -0.553394  0.341553  1.000000   
PRECIPITATIO
N -0.440068 -0.558716 -0.646120 -0.384310  0.096598 -0.339397 -0.042719  1.000000  
WIND  0.052037  0.159990  0.424909 -0.036066 -0.098390  0.093429  0.003775 -0.294829  1.000000 

Table 4. Unit root test results (Level). 

Variable ADF-Fisher Chi-square PP-Fisher Chi-square Stationary at Level? 

Production 0.9846 0.8533 No 

Area 0.0000 0.0000 Yes 

Fertilizer 0.0289 0.0000 Yes 

Tractors 0.8198 0.0027 No 

Tubewell 0.2597 0.0077 No 

Minimum Temp 0.1683 0.0000 No 

Maximum Temp 0.0002 0.0000 Yes 

Precipitation 0.0000 0.0000 Yes 

Wind Speed 0.0454 0.0011 Yes 

Table 5. Unit root test results (First difference). 

Variable ADF-Fisher Chi-square PP-Fisher Chi-square Stationary at First Difference? 

Production 0.0000 0.0000 Yes 

Tractors 0.0000 0.0000 Yes 

Tubewell 0.0000 0.0000 Yes 

Minimum Temp 0.0000 0.0000 Yes 

Table 6. Hausman’s test results. 

Test Summary Chi-Sq. Statistic Chi-Sq. d.f. Prob. 

Cross-section random effects 3.336294 8 0.9115 

Table 7: Hausman’s Test Statistics for Random and Fixed Effect Models 

Variable Fixed Coefficient Random Coefficient Variance of Difference 

AREA -0.013460 0.000673 0.000127 

FERTILIZER -0.002952 -0.000417 0.000444 

D(TRACTORS) 0.000017 -0.000058 0.000000 

D(TUBEWELL) -0.000148 -0.000156 0.000000 

D(MIN_TEMP) -0.918668 -0.898685 0.018304 

MAX_TEMP 0.919260 0.697293 0.077951 

PRECIPITATION -0.000170 0.000487 0.000005 

WIND 0.283687 0.639443 2.076619 

 

Coefficients Estimates from Fixed Effects Panel Regression 

Model 

The results of the fixed effect model are represented in Table 8. 

The area shows a statistically significant positive effect 

(coefficient = 0.0135, p = 0.0480), meaning that an increase in the 

area under cultivation is linked to a marginal rise in the dependent 

variable. Consequently, results agree with those of Ahsan et al. 

(2020), who discovered that just a one percent increase in the 

cultivated area of cereal crops results in a about 0.56% increase in 

crop output. Previous empirical findings (Ahmed and Schmitz, 
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2011; Chandio et al., 2019; Ahsan et al., 2020) support this result. 

The results corroborate the previous studies of Qureshi et al. 

(2016) and Warsame (2021). Fertilizer has a positive and 

statistically significant effect (coefficient = 0.0429, p = 0.0368), 

indicating that adding more fertilizer causes the dependent 

variable to rise. The research's anticipated findings point to a 

significant correlation between fertilizer application and 

agricultural output.  The findings of the study are supported by 

Chandio et al. (2018) investigation. According to Chandio et al. 

(2021a), Nepal produced more rice when fertilizers and better 

seedlings were used. In a similar vein, Ozdemir (2022) examined 

more recently how climate change and fertilizer use impacted 

agricultural output in several Asian countries. The findings 

demonstrated that agricultural productivity was significantly 

reduced by climate change, while it was significantly increased by 

fertilizer consumption. The results of this study are in line with 

earlier studies that looked at the effect of fertilizer usage on cereal 

output in the literature (Rehman et al., 2019; Chandio et al., 2021a; 

Chandio et al., 2021b; Rayamajhee et al., 2021). There is no 

discernible effect of the number of tractors (p = 0.9597) on the 

dependent variable (coefficient = 0.000017). While Hussain et al., 

(2018) discovered that agricultural machinery had a considerable 

impact on agriculture output, the data contradict their findings.  

There are no statistically significant differences between the 

minimum temperature (coefficient = -0.9187, p = 0.1364) and 

tubewell usage (coefficient = -0.000148, p = 0.3884). While, Abbas 

et al. (2022a) discovered that TMIN has a negative and significant 

coefficient, indicating that TMIN has a detrimental long-term 

effect on wheat productivity. 

There is a statistically significant negative effect of precipitation 

(coefficient = -0.4402, p = 0.0298), indicating that more 

precipitation lowers the dependent variable. Although crops 

require water to grow, the negative effects of precipitation on 

agricultural productivity observed in this study—which 

corroborate earlier findings by Salim et al. (2020) and Huynh 

(2024)—can be explained by the possibility that excessive 

precipitation may also harm crop production or that torrential 

rains may cause floods, which are bad for agriculture. Despite a 

substantial standard error, wind (coefficient = -0.2837, p = 

0.0416) has a statistically significant negative effect that highlights 

its meaningful impact. The results support those of Nana (2019), 

who found that cereal production decreases by 0.85% for every 

10% rise in wind speed. The maximum temperature exhibits a 

statistically significant negative influence (coefficient = -0.7454, p 

= 0.0375), suggesting that greater maximum temperatures are 

linked to a decline in the dependent variable. The findings of this 

investigation are consistent with the (Bannayan et al., 2014, 

Sarker et al., 2014; Khan et al., 2019a; Khan et al., 2019b; Chandio 

et al., 2020b). Nelson et al. (2009) estimate that the effects of 

climate change could result in a 10%–15% drop in cereal 

production, which would increase expenses. Furthermore, 

Chandio et al. (2021a) demonstrated that in several Asian nations, 

such as Bangladesh, India, Indonesia, Pakistan, Sri Lanka, 

Thailand, and Vietnam, the temperature reduced rice productivity 

by 4%. Moreover, similar negative impacts of temperature on 

agricultural productivity have been discovered by Kumar et al. 

(2021), Ozdemir (2022), and Attiaoui and Boufateh (2019). This 

result, however, contradicts studies by Torvanger et al. (2004) and 

Kokic et al. (2005), which demonstrate that because of their cold 

climate, Australia and Norway benefit from higher temperatures 

in terms of agricultural productivity. 

The dependent variable is significantly impacted by area, 

fertilizer, maximum temperature, wind, and precipitation, while 

tractors, tube wells, and minimum temperature have no 

discernible influence. 

 

Model Evaluation and Diagnostic Statistics 

The diagnostic statistics for the model validation are presented 

in Table 9. This R-squared is not very high, but it is typical in 

economic and social science research, where the dependent 

variable is influenced by a large number of unobservable 

factors. Although there are probably other factors or dynamics 

at work that have not been taken into consideration in this 

research, this number indicates that the model is only 

moderately good at explaining the link between the predictors 

and the outcome. The model is statistically significant overall, 

as indicated by the big F-statistic, which is a favorable 

indicator. However, the degree of model fit and the p-value 

determines how relevant this statistic is. At the 5% significance 

level, the model as a whole is statistically significant, according 

to the p-value of 0.0359. This indicates that the independent 

variables together account for a sizable amount of the variance 

in the dependent variable, allowing the null hypothesis—

which holds that the model has no explanatory power—to be 

rejected. With a Durbin-Watson score of 2.588, the residuals 

appear to have no discernible autocorrelation, indicating that 

the model's mistakes are unrelated to one another. This is a 

favorable outcome because it shows that the model's error 

terms behave properly and validate the correctness of the 

regression results.

Table 8. Fixed effects model results. 

Variable Coefficient Std. Error p-value 

C -19.88384 20.38970 0.3304 

AREA 0.013460 0.312456 0.0480 

FERTILIZER 0.042952 0.091660 0.0368 

D(TRACTORS) 0.000017 0.000336 0.9597 

D(TUBEWELL) -0.000148 0.000171 0.3884 

D(MIN_TEMP) -0.918668 0.614960 0.1364 

MAX_TEMP -0.745446 1.595343 0.0375 

PRECIPITATION -0.440170 0.184478 0.0298 

WIND -0.283687 5.241582 0.0416 
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Table 9. Model statistics. 

Statistic Value 

R-squared 0.326891 

F-statistic 65.55337 

Prob(F-statistic) 0.035932 

Durbin-Watson Statistic 2.588314 

 

CONCLUSIONS AND RECOMMENDATIONS  

The current study looked into how Pakistani agriculture 

productivity was affected by climatic and non-climatic variance. 

This empirical analysis used data from 1991 to 2021. In this work, 

the stationary issue was investigated utilizing the P-P, and ADF tests. 

Additionally, fixed effects panel data model methodology is utilized 

to find out the impact of climatic and non-climatic variables on 

agricultural productivity.  This study includes the climatic variables 

such as average maximum and minimum temperature, 

precipitation, wind, and other non-climatic factors are cultivated 

area, tractor, tube well, and fertilizer use. These results underscore 

the significant effects of area, fertilizer, maximum temperature, 

precipitation, and wind on the dependent variable, while other 

factors like tractors, tube wells, and minimum temperature do not 

show significant impacts. The area has a statistically significant 

positive effect, indicating that an increase in the area under 

cultivation is associated with a slight increase in the dependent 

variable. Fertilizer shows a positive and statistically significant 

effect, suggesting that more fertilizer leads to an increase in the 

dependent variable. The number of tractors does not significantly 

impact the dependent variable. Tube well usage and minimum 

temperature do not exhibit statistically significant effects.  

Precipitation has a statistically significant negative effect, suggesting 

that increased precipitation decreases the dependent variable. This 

study's analysis of the deleterious effects of precipitation on 

agricultural productivity revealed that, even while crops require 

water to thrive, excessive precipitation can also harm crop yield. 

Additionally, heavy rainfall can result in flooding, which is bad for 

agriculture. The wind has a detrimental impact that is statistically 

significant. Higher maximum temperatures are linked to a decline in 

the dependent variable, according to the statistically significant 

negative effect of maximum temperature.  

Given that agriculture is the foundation of Pakistan's economy, the 

government and policymakers should set up awareness 

campaigns about climate change adoption to ensure agricultural 

productivity. Furthermore, Pakistan experiences abrupt and 

severe environmental changes as a result of the fast-changing 

climate, which lowers agriculture productivity levels. Strong 

action is therefore required to save the agricultural industry. 

It is also advised that improved crop types that are resistant to 

temperature changes and drought be developed and put into 

practice in order to mitigate the harmful effects of climate change. 

Additionally, in order to help farmers adapt to the effects of 

climate change, agricultural extension officers should focus more 

on teaching them about techniques like mulching, plant rotations, 

shifting planting dates, and plant diversification. Additionally, 

meteorological departments should establish direct phone contact 

with farmers and promptly inform them of proactive measures. 
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