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Abstract

This article investigates the topological structure set of all mild solutions. The equation has been
discussed in this article is Fractional constant evolution equation with finite delay on half line. Our
purpose is to show that our solution set is an Rs set. It was proved on compact intervals. The compact
intervals was made by satisfying a result on topological forms of fixed point set by using the krasnosel
skii type operators. And at the end, we apply the inverse limit method. By using this method we get
the conclusions on half line.

Keywords: Half line, real line, fractional differetial equation, compact intervals, krasnosel
skii type operators, inverse limit method, Rs set. 2019 MSC: 26A33, 34K37.

1 Introduction

Norm of a Banach space F' is |.|. Analytic semigroup of operators on F' is T(g)zzo and the infinitesimal
generator of this semi group is B : D(B) C E — E. The 7 : [—k,0] — F is a function belonging to phase
space Cy = C([—k,0]; F).

In this article, we proof the existence of results on the half line and specially, we find mild solution of the

task is an Rs set. The aim of this article is to study the topological structure of the set of all mild solutions
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of fractional neutral evolution equations with finite delay of the form:

CD|a(l) — h(¢,a(t), DPa())| = Aa(f) + f(£,a(f), DPa(f)),£ >0

a(0) =ay a'(0) = a4, (1)
l<a<?2, 0<p<1

Rs set is a analytic with respect to Cech homology function, i.e. cech homology has the similer homology
as the one point space and Rs set is nonempty compact connected space. It is equivalent to point [14] by
order to understand of algebraic topology, it is also a singleton.

It is well famous that, in 1890, cauchy problems are proved by peano.

{x'(e) = f(t,z(0)),0<l<a
z(0) = g

Here f has local solution and has the uniqueness property which did not hold in general, and f : [0,a] x R" —
R™ is continuous. These are encourage for studying the structure of solutions. Peano himself proved these,

when n=1 then solution becomes
CW)=xz):xze(

is compact, connected, for £ in few nearby of 0. In 1925, these conclusions are simplified by kneser into the
part of constant m. Further, in 1926, ( is a continuum having norm proved by Hukuhara.

A much specific feature of this ¢ has been proved in 1949 by [2]. They showed that ¢ is an Rs set, so ( is
analytic. The similar results are gained by [8]. For further detail, previous results and relavent references
. 121, 3l

In more cases, differential problems with solution set often correspond by fixed point set of operators in
electible function spaces. The conclusions of fixed point sets on Rs property mostly gains operators with
compactness in all linear space. This application is difficult. In this chapter, we first gain the theorem that
fixed point set with Rs property of krasnosel skii kind of this form V + B, where B is contraction and V is
compact.

Then by using the inverse limit method and this result, we gain the Rs property for mild solution set of
above equation but also gain the existence result.

We refer the readers [5], [9], [10], [T1], [12], [22], [23] and on topological structure of solution sets we focus
to [3], [6], [7], [15], [14], [17], [18], [23].

2  Preliminaries
We remember a : [0, +00) C S — F then , the order with p > 0 with under limit zero for a is stated as

DPa(l) = 1)/0(€—H)“_1a(n)dfij>0

(o)
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and the order of fractional caputo derivative p > 0 for the function a is stated as

CDoa(l) = ["=0a(m)(f) = — - | /0 (= )Lt (),

I'(m-—p

regarded as the right hand side of the upper equation are stated as [1,0). We can write the integrals that
are represented in above equations are given in bochner point of view. By the generator B, we suppose that
it is the infinitesimal operator of an analytic semi group S(¢),, such that 0 € (D). Here o(D) is B. It
is called for every that for each 7 € (1, 0], the fractional power A7 is defined by domain of open leminar on

E(A™). The underlaying characteristics will be used
(i) It is a permenent N > 1 that is

N = sup |S({)| < 0
teER

(ii) The norm of banach space E(A") is ||a||s = |APal, for a € C(AP).

(iii) S(): F— CV (AP),V £>0.

(iv) S(¢)Ba = BPaS(¥), for each a € E(A?) and £ > 0

(v) There exist Cs > 0 such that |B?S(¢)| < %, APT(¢) is bounded on E, for every ¢ > 0.

Firstly we state following lemmas, and we will omit them

Lemma 2.1. a,b € X, »,, for every n € Ny, , we have

(i)
|a?(£) — b2 ()] < 2ppmn(a—0),V L€ [—rn],

(i)

laZ 1l < 2pm.n(a) + [[@llm, for all €€ [0,m],

(iii)
laf () = b 1lo < 2pmm(a—b),¥ £ €[0,n]

(iv)
llagll < 2pmn(a) + [lellm
Definition 2.1. Let ¢ : z X g is denoted as

(i) upper semi-continuous ag € Y, if for any neighbourhood O(g(ag)) of g(ag), then 3 a neighbourhood
O(aop) of ap that is p(a) C O(p(ag)) V¥ a € O(ap)

(ii) linear- compact if o(E) is Eof Z. f W N F # (), then z € FN Z is called ¢ if z € p(z). The set of all
fixed point of p is expressed by Fiz(p).
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Lemma 2.2. The function R, and T, underlaying condition:

(i) For any fized £ > 0, Ry(¢) and T4(€) are laminer and compact function. Furthermore, ¥V a € F, we
have

qM
|Ry(£)a| < Mla| and [T4(€)a] < mkﬂ

(ii) Operators Sy(£),, and T4(€)
we have |Ry(¢1)a — Ry(€2)al — 0 and | T4(€1)a — T4(l2)al — 0 as &1 — €5

y>0 are strongly continuous, which means thatV a € £ and 0 < {1 < {3

(iv) For everya € F; p € (0,1), v € (0,1], we have

AT,(0)a=A""T,(0)A%, (€ Ry

© qCoI'(2 — p) —pq

Now assume that topology of E is the family of semi norms p, : m € M. E is a Fréchet space.

£>0

Definition 2.2. Let k22, be a series in [1,2). The map Z : E — E is called to be a compacted function if
pn(O(a) = UB0)) < kppn(a—b) Va,be E

These results are used to show that our main conclusion.

Lemma 2.3. Assume two operators Z,C :— G. Let underlaying conditions are held
e U is L, -contraction, for every m € M,

e | is throughout continuous and

iy PolL(@)

—0,¥m € M.
pn(a)—)oo p’fb(a)

Then U+ L has a fized point in F.

3 Nomenclature
The functional spaces: In this section, for £ > 0, we use the representations
Ne:e=meM:m>¢

Re :=[¢, +00)
and the following function spaces

(i) Fe = F([—s,&], F) is the metric space of each permenent ¢ : [—s,&] — F' of the mode

lplle = sup[@(€)] < € € [=s; €]
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(ii) Foo = E(]—s,00); F) is the topological space endowed with the group of semi norms |.||22;.

(i) Xem = E([§,m]; E) is the Banach space of all continuous a : [{,m] — E with the norm

pem(a) = sup |a(f)|;a € Xem

Le€,m]
- —n_lla—Db[x
b=z, 0 00l e
SD(G‘ ) EN¢ 1—|—||a—b||n a
and
nla—0>
d(a,b) = =, 9—n_Penla =) a,be Xe

n€Ng 1 +p§,n(a — b)a
Let £ >0 and ¢ € E¢.

(v) For a € X¢ ,(resp. a € X¢), we put

a?® — a(l) +¢(§) —a(§), Le[E,m]
QO(E); te [_575}

or resp.

agp(f) — a’(é) + @(5) - a(g)a > €7
90(@)’ le [—S,ﬂ

Then it is truth that a¥ € E,,.

(vi) For t € 4 and a € X¢,, we shall represent ¥ the map

(£,a) = £7(¢,a) = (£,a%(0), ).

(vii) At the end, if @ € E then, for every ¢ € [0, ](resp. £ € [1;2)), we will represent by 6, the Ey -operator
stated by
Oe(k) =00+ kK),k € [-7,0] :

Definition 3.1.
Qm(W(a) - W(b)) < lm‘]m(a - b),

for all a,b € E. The underlaying results are very useful to prove our main results

4 Hypothesis

To studying the topological structure of mild solution for neutral evolution equations we take the underlaying
hypothesis

(h1) A produces an analytic semigroup T (), that is 0 € p(B) and T(¢) is correct for every £ > 0.

(h2) The statement g : E x ¢ x E — Cj holds the underlaying properties
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(i) The map £ +— ((¢, p,v) is measurable, for all (p,v) € E x Cy.
(ii) the map (p,v) — (¢, p,v) is continuous for a.e. £ € €.

(iii) 3 a constant ¢; € [0,q) that is for every D > 0, there is a positive statement rp € Li(s) and if
(p,v) € F x Do with ||(p,v)|| < D then |[((¢, p,v)| < rp(f) for a.e. £ € €.

(iv) for any bounded subset I of E such that ||(xb,d)|| — oo lﬁ(é;py’)l")‘l = 0, uniformly in £ € J.

(h3) g : e x E x Dy — F is compact. Further, 3 a constant v € (0,1) and a series Gn > 0: m € M with

n"iT(1+v)Di_,

Gn(w B ) +

N

vI'(1+ Vq)> <

such that H € D(A")and, for any (p,v), (o/,3") € E x Cp, the function A”h(.,p,v) is measurable and
AYR(L,.,.) satisfies the Lipschitz condition

|AYR(€, p,v) — AYh(L, o', V)| < Hu(lp — @' |+ | v — V' o), a.e.l € [0;n)

And the operators S, and T 4 are given by

a(€) g>0 ) >0

(00 =g / " 004 (0)T(0) ()00

Salt) = / 4 (0)T(O) () pd

with ¢,, is a probability density function which is defined on this interval (0, 00) as

The underlaying results of R, and T, are used in given mild solution.

5 Mild Solution

CD>|a(l) — h(t,a(t), DPa())| = Aa(l) + f(£,a(f), DPa(f)),£ >0

a(0) =ao d'(0) =aq,¢€[-r0],
l<a<?2, 0<pB<1

Lemma 5.1. If

a(l) = xbo+arl+h(l,a(f)) — h(0,a9) — 1'(0, xbo)¢

L p—1 1 — k) (k,alk),d (k
+m(f—'€)g G(H)dHJFF(p)(f )97 f (K, a(k),a' (k)
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holds then we have

v(\) Sy (6)[xbo + arl + h(€, a(£)) — h(0, ag) — (0, ag)]

/ VI Y Ah(k, a(k),d (k))dk
/ —R) 1 (K, a(k), d (k))dr

Proof.
Cpe [wa) — h(e, a(f))} = Aa(0) + f(¢,a(t), D" a(f))

Integrate on both sides

a(l) — xbo — a1l — h(€,a(f)) + h(0,a0) + h'(0,a)l
A t

' o—1 b — k) (K k), ad (K
_ m/o(e_ny a(n)dn—f—r(p)/o(g )9 f (e Xb(k) ()

alf) = xbo+arf+ (L, a(t)) — h(0, xbo) — K'(0, o)
+ré)) /Ot(e — )" Ta(k)dr + ﬁ /Ot(z )P L (5, Xb(R), @' (k)
WO = ao+art+ h(, xb(0)) — h(0, a0) — (0, xbo)?
+$(£ — )P L) dr + ﬁ(z )9k, alr), xb (5))
La(t) = £lag)+ £larl] + £h(E.xb(0)) — £h(0, ap)

A
—£1'(0,a0)f + £——

1 p—1 /
—|—£m(£ — k)7 f(k, xb(k),d (K))dK

(0 — k)" h(k,a(k),d (rk))dr

/ e Walds = ag + hL.a(6)) b0, xbo) + 2 — 000
0

A o0
+E e~ N al) " (D p (i a(k), o (k))dk

—(N)(k,aB(k),a' (k)) f(kya(k), d'(k))dk
Let

e~ N Xb)" W (g a(k), a! (k))dr

| |
o— 5
3 3

=M RaB W) £ (1 a(r), o' ())dw
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v(A) = ag+h(la(l)) —h(0,a0) + % _ % n %U()\) . u)(\();)
v(A) = ao+h(¢, a(l)) — h(0,a0) + ay — f;\’Q(O, ao) i Av(/\)/\;k u(N)

v(\) = aYy+h(l,a(l)) —h(0,a0) + a1 [N\ — A7 — B (0,a0)[N\* — A] !
+AVN)AT = AT+ u(M)A - A

Put
(A7 — A)T = / (VW Q(e)de (A2 — A)L = / N W Q ()i
0 0
v(\) = Xbo+h(€,a(€))—h(0,ao)+a1/ AR Q (k) dr
0
HOa0) [ Q)
0
—i—Av()\)/ e_(’\q)(“)Q(n)dfi—i—u()\)/ e~ AW Q(k)dr
0 0
Kk =
dk = @t tde
1;()\) = a0+h(€7a(€))—h(07ao)+a1/ e—(Aq)(ZQ)Q(gq)ngfldg
0
fh’((),ao)/ e~ IEDQ(e)qea 1 ae
0
+Av(>\)/ e’(’\q)(tQ)Q(éq)qéq’ld€+u()\)/ e~ AIE Qe g ae
0 0
v(\) = ao+h(€,a(€))—h(0,ao)+a1/ e~ QU grr 1 e
0
—h’(O,ao)/ e~ OO Q1) qeI 1 de
0
+Av(\) / e~ MO QN Tl 4 u(N) / e OO Q) qr1 1 ae
0 0
put

07 _ / = NOC)y, (9)dg
0

v(\) = aBo+h(¢a(f)) — h(0,xbo) + a1 / / e~ VOO y, (0)Q(07)qt~  dedo
0 0
W) [ [ OO 0)q(en)qerardp
0 0
+Av()) / / e~ NOOy, (0)Q(L)qea= deds
0 0

Fu(N) /O h /O h e~ NOOy, (0)Q(07) gt dedh
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put
El
t =3
ar’
al = -

/ 1q—1 /
v(\) = aBo+ h(,a(t)) — 0a0+a31/ / 0 (0 Q((q;;)qz;zldgde

—(0) Qﬁl) a1 gy
an// 1, (6 (q) Igi—1 ¢ %

/ 1q—1 ’
+Av(A // ~0e)y, (g QL4 L Lt g

(67) 1571
/ / —ON% Q(( /)q) - 1%619

& > , / /q—1 /
v(d) = Bo+h(€,a(€))—h(0,xb0)+/o /O 6_(M)¢q<9>Q((;q)q)qéq_l %da

_h/((),(lo) /OO /00 67()\2/)1/)(1(9)@(6/(]) ya— 1h/(07 0)%d9

(69) ToaT 0
vq) a1 e
/ / ~0 g (9) Q((oq;l)qeqlA()de

v a1 e’
/ / ~O4,(0) Q(qu;])qeq—l u(A )7d0
Q(t'q) ¢t

v(\) = aBo+ h(t,a()) — h(0, xby +/0 /O Oy () 0, ity

)
I A v Q(ﬁ'q) ga=t )
/O /0 e (0)= gy a1 (0, a0)dl'df

e’} fe’e] —()\é/) Q(E’CI) glq 1 ,
+/O /0 g (0)= gy 0 g Av(N)dl'dd

oo e’} 7(}\[) Q(€/Q) glq 1 ,
+/O /0 e g (6) R u(\)de'df

put the values of v(\), u(\)

o) = ao+ bt at)) — h(0, xbo) / / ey, (0 Q(( ’)> O s

/ / ey (6 62((12’) M aydt'dd

A A >q

glq—l e} ,
A/ e~ W(malx).a (H))h(ﬁ, a(k),d (k))drdl'df
0
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> Ooe—(,\)(e’) Q(!'q)
+/0 /0 %(9) (0’1) q

ga-1 e ,
7 / e~ Wmal)a’(8) £ a(k), a' (k))drdl' db
0

v(A) = ag+ h(la(?))— h(0,ap)

/ K/q 1
+a1/ / ‘<”>wq @ ;l)q a,dl’do

'(0,a0) / / G /;]) O ity
/ / / R (( 2,0 1Ah(f< a(k), ' (k))drdl'do

D
A AN O i — (. alr).aY ()’ do

v(A) = ao+h(l,aB{)) — h(0,a0) + a3 /00 /00 e_(’\zl)@/}q(ﬁ)cz((;;;])qy; 1 a dt'df
0
(0.0 / / =Dy, (6) (eeq/)q)qw L aByddf

(
/ / / ey, (6 Q((:/)q)qelq 1Ah(/~”» a(k),a’ (k))drdl'df
/ / / e C0%,(6 Q((gq/gl) o 1f('€7a(fi),a’(fi))dmd£’d9

’q) f’q !
v(\) = ag+ h(l,aB(£)) — h(0, xbo) + aB; / / e~y (6) ooy aydl'do
/ Zlq 1
_ M) /
h'(0, a0 / / (6 q) q 0 a,dl' do

/ ‘W)U / AC t/q o 1Ah(/<; a(k), d (k))drkdf
/ / Yy (0 “q g/q 1f(ﬁ,a(m),xb’(m))dnd9}d€

Now we invert laplace transform

Ql'q) £}
() = aBo+h(ta(t)) - h(0, a0) + xby / / 0 (0) E g et o
/ 1q—1
—1( an/ / e~ e, () q) E ardl’'do
/C] g/q 1
[ / / (0 oq — Ak, (), @' (x)drdd

/ / V(0 /q é’q 1f(’<,a(ﬁ),a’(ﬁ))dnd9}

10
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_1
put 09 = 5

v(\) = ag+h(l,a(l)) — h(0,aYy) + a1 /oo/oo _(Ml)z/;q(g)Q l'q) a1 wdfdf
0

(
(6) * g1
e/ w 1
—1'(0,a0 / / ey (0 (Caq) O v

q

[/ / Va0 t'q = 1)0Ah(k, a(k),d (k))drdl
/ / Val (U'q = 1)0f (K, a(k), ' (r))drdo

put
0 =0—K

/q) g/q 1

v(A) = ag+h(la(l)) — h(0,ap) +Xb1/ / o (M )%

/ 1q—1
—h/( 0xyo/ / ~C%,(0) )qge ardl'do

ardl’ d

+[/0 /0 0o (0)Q(0)(€ — )Tq(¢ —n)q_leAh(faa(/i),a’(ﬁ))dmd@
+f N / G (0)QUO) (€ — Ryt — K)0F (s, aB(w), XV (7)) didd
put
/ (6 411040
v(N) = a0+ h(t,a()) — h(0, ag)
+/Ooo(en )7 ay,d’ d,{/ V(0 én)q))qé)d@]
—/Ooo(é k)1 (0, ap), dm[/ Yy (0 n)q))qf)d@]
+/Ooo(z—n)q YAh(r, a( dm[/ e (0 m)"))qede]
+/Ow((t—m)q_1)f (K, xb(k dn{/ g (0 )q@dé’}

v(\) = aYy+ h(la(l)) — h(0,a0)+ € €T, (¢ — k) (£ — k)" ay,d (k))dk
7/0 Tl —r)(— n)qflh/((), ap),d (k))dk

+/0 Tl — k)0 — k)T Ah(k, a(k),d (k))dk

+/0 Tl — k)l — k)T f(K,a(k),d (k))dk

11
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v(A) = S;(0)]ao + h(£,a(f)) — h(0,a0) + /0 Tl —K)(—kK)" tay, d (k))dk

—/0 Tyt —K)(£—&)TH(0,a9), d'(k))dK]

—|—/O T(0 — k)0 — k)T Ah(k, a(k),d (k))dk
+/O Te(l—r)(0— k)1 (k,a(k),d (k))dk

This is a mild solution of fractional neutral evolution equation. O

6 Example

Example 6.1. The operator ,, is completely continuous relation

Po,m (Om(9))

=0.
pO,m(p)

limpo,mr(p)_)oo

Proof. We divide this example into three steps.
Step 1. U,, is compact. Indeed, let (py) is a series in X, meet to p € Xg . Put

H={p,:0€ N}U{p}
Since 9% ([0,m] x G) is connect there is a positive function sg € Lt (¢) such that
(0% (k)] < e (k)
V b e G and for a.e. k € [0,m] . This implies

|F(07 (5, o1)) = F((9” (5, 0))| < 2rc(r),

V1 € M and for a.e. x € [0,m]. In the contrary, it taken from the compactness of ¥ and the preassumtion

that g(n(k,ner)) — 9(n(k,a)) meets to 0, for atmost each k € [0, m]. Hence, by this theorem

limy o / (0% (1, 1)) — C(0% (1, ) 75 s = 0.

12
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From Hélder inequality we get

Ompr(l) — Ump(ﬁ)’ = /O (6= &) T4 (0= K)F(0Y (K, pr) — f(D” (5, 9)))dr

M [* o1
S m/g (€= r)TC(0Y (ky px) — F(” (5, 9))]dr

( / (0" (. 01)) f(a%,p)n%(n)dn)m

quq—Q1 1_q a
S Taag o) 1@ o) = CO (o)) o 0m)

V £ € [0,m]. Here we apply the underlaying suggestion

t 1—q1 1—q1
</(g_,€)1qqlld,{>:gqq1(1_‘h> qucn(l_‘h)
0 q—q q—q1

Hence po.m (Omar — Oma) meets to 0 when L — oo. Therefore, U, is continuous.
Step 2. U,, is connect. Let R be a bounded subset of Zp,,. when we use this Lemma the set 9% ([0;n] x R)

1
is bounded. Hence there is a positive statement sg € L« (¢) such as

607 (4, )| < ro(6)

for all @ € Q and for a.e. £ € [0,m] . For a € @ and 0 < ¢; < {5 < m, we have

Bmp(gg) — Bmp 61

‘ / (b2 — K)1 Ty (la — K)C(DY (k. ) dr

’/o (6r = R)" T 4(01 — K)C(0Y (, p))dr

<L+ 1)+ I3,
where
L, = /Ot(ﬁg — ﬁ)qfl"l—q(ﬁg - K)((aw(/{, p))dk
no-|f s — R0 — (6 = W)y (€ — R 5,9
no= | (b= R Tl = 8) — Tl — I (s, )

Estimate I;. By using Hoélder’s inequality we have

1—q1

qM 1—q _

Il S ( ) T || 1 (fg—gl)q ql:
F'l+q¢)\¢—a Ira Li

13
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Estimate I5. We shall use the following inequality
(a® — b¥)Y < a7 — b7,
V0<c<d, p<0,vy>1. For justifying this equality we write that the function
o) = (¢ —1)" — 57 + 1

is decreasing on (0, 1]

o'(0) = py[(1? — 1)Lt — e >0, L€ (0,1].

Hence o(f) < o(1) = 0 which shows that
(0° —1)7Y <27 — 1.

Let £ = ¢ we gain the required inequality. By using the Holder’s inequality we get

= 1—q1
qM t 1 1 1—qy
_[2 < —— 1 (/ |:€2—Hq —fl—liq dk
gl ([0 -=n
1—q1 a—q a—q
qM 1- q1 Tzl 7411
< B (EL) Tl (o -d
q)\4—q1 L

a—a1 I
+(l2 — 51)1‘“>

1-q1

qM 1—g¢q _

< (SR el (G -aye
I+ \qg—a .

Estimate 3. Without loss of generality we let that ¢; > 0. For € > 0 littel enough
l1—e€
I; < / (61 = R)THTg(le = R)C(0Y (8, 9)) — Tl = K)C(D? (K, ) |dr
0

£y
Jr/Z (1 = &) To(le = R)C(DY (K, 0)) = Tq(tr = K)C(8Y (5, ap))|dr

1—€
(1‘“)Lm| | [””“Pm
T 1
q—q [ T(i+q)

q—q1 a—a1 1—q1
+<£11‘11 —_ elq1> [%11}) | H Tq(fg — H) — Tq(fl — H) ||L(E)
k€(0,£1—€

IN

Since T(¢) is compact, it follows that T,(¢)(¢ > 0) is compact in ¢ in the variable metric space. Hence I3
meets to zero dependently of p € @ as fo — ¢; — 0 and ¢ — 0. By adding the upper results we can results

that {U,xbp : p € Q} is equicontinuous. For each ¢ € [0,m] we take

K(t) = {Omp(l) : p € R}

14
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It is important to prove the relative compactness in F' of K(¢). For these € € (0,¢) and ¢ > 0,

0= [ [T e o070~ w1000 i
for a € R and ¢ € [0, m]. It is easy to know that
t—e oo
= T(eqé)q/o /5 00— k)T g (0) T[(€ — k)10 — €15]¢(0Y (k, p))dOdr
By using the results on g and the boundedness of R, it follows that the set
o[ 0 oI - 00 - sV s, oanin o € @
is bounded in F. Then, from the connectedness of T(e?§), we can obtain that
LO =065 0(0): pER
is relatively compact in F'. On the contrary since
b—q/ 0p(0)T(£16)bdf, beF
we conclude that, for everya € R,

|Omar(€) — Omxb(f) = RK)T g (O)T((€ = K)10)C(0” (5, p))dbdr

EPAVES ) " ;
+/o /5 (€ — k)1 g (0) T ((£ — K)?0)C (0¥ (K, p))dOd
_/o /6 0(L — k)T 6 (O) T[(L — 1)101C(D" (1, 0) )

8
9(4 = K)T () T((€ = £)10)C(0Y (k. ))dfdr

/t / 0= R)T g (0) TI(C — K)10)C(8¥ (, p))dbdr
< Ol +02

By using Hélder’s inequality we suggest O; and Os as follows:

N(/Ot(ﬂn)qlrQ(ﬁ)dn> (/05 9¢q(9)d9)
N(/Ot(ﬂ t=n )1QI(/trgz}(ﬁ)dn)ql(/59%(9)659)
N(;:Zﬁl_mnq—qlnmn 3 )(/ 06, (6 de)

O1

IN

N
I
&
d
IS
BN

IN
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and

O

IN

M(/{E(z Ry d)(/ b))
M(/t_e(ﬁ—:)lqlldn> (/ > (/ o0 da)
w(imm) Cemireny / s 010

Combining above inequalities and noting that

o0 1
/O 004(0)d0 = 575

IA

we obtain

eI~ N

[mq q1/ 0¢q(0)d0 + —— (+1)

Hence there are present relatively fractional sets arbitrarily open to the setL(£). So L(¢) is also relatively

1l—q\'™®
wmak(ﬁ)—uma(mw( - ) ol x
q—q1 L[‘é{m]

connect in F'.

Step 3. Let € > 0. Its clear that 3 a negitive arbitrary constant F such as

'(1+q).

700 <~ | (p,0) |

VL e [0;n] and V (p,b) € F x Dy with || (p,b) ||> C. Let sp € Lqil(s) be a nonnegative function satisfying

|g(€a £, b)| < SD(E)a

a.e. £ € € regarded that || (p,b) ||[< C. Hence, V (x,b) € F x Dy,

F(l + Q)e

<
‘g<£1 a7 b)‘ — SD(E) + 4an

I (p,0)

a.e. ¢ € [0,m]. By using theorem, for a € X ,, and ¢ € [0, m], we take

[Bna(0)]

_aM t (9% (e .
(1 +0q) /0 (€= m)THC(0Y (5, 0))d
(1+4q)

gM ! o1 r o
= m/o“—@ [ro(mW(a“’(nnuamﬂdn

qM ! -1 F(1+Q)e
< Ttaza | Ewe e 4y 1 (a) + 2 d
- F(1—|—q)/0( K) {TC(H)—F AMma (4po,m(a) + 2|[¥]|o) | dr
M 1— 1-q
< s |(GER) me vl
F(]- + Q) q—q1 L[?)l,m]
I'(1+q)e
i (o (a) + 2l0)|
1-q1
qM 1-—q _ €
< qa—q1 ©
< epom(a) + T+ (q—q1> m HTC”Li +3 Il % o

[0,m]

16
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So
limy, m(a)*)oopio,m((;m(a)) <e
' Po,m (X D)
This shows that
limpo,m(a)—mcpo’;;:?j;” =0
because € is constant. The proof of this lemma is complete. O
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