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Abstract

The problem of location detection is investigated for many scenarios, such as pointing out
the flaws in the multiprocessors, invaders in buildings and facilities, and utilizing wireless sensors
networks for the environmental monitoring process. The system or structure can be illustrated as
a graph in each of these applications, and sensors strategically placed at a subset of vertices can
determine and identify irregularities within the network. The (OLD-set) that is open locating
dominating set is a subset of vertices in a graph, such that every vertex within the graph is
distinct and non-empty. Let G = (V,E), be the graph, a set S ⊆ V (G) is a [1, 2]-OLD set if
N(i) ∩ S 6= ∅, for some i ∈ V (G), and 1 ≤ |N(i) ∩ S| ≤ 2, as well as N(i) ∩ S 6= N(j) ∩ S, for
every pair of distinct vertices i, j ∈ V (G)\S. The minimum cardinality of [1, 2]-OLD set in a
graph G is called [1, 2]-open locating domination number and is denoted by γold[1,2]. In this paper,
we compute the [1, 2]-open locating domination number of some families of graphs.
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0 Introduction and Preliminaries

Location detection problems have been considered for several applications, including detecting faults

in multiprocessors, contaminants in standard utilities, invaders in buildings and amenities, and

environmental monitoring employing wireless sensor networks. The system or framework can be

modeled as a graph in each of these applications. Sensors strategically placed at a subset of vertices

can determine and identify irregularities in the network. An OLD-set(open locating-dominating

set) in a graph G is a subset of vertices in that graph such that they have a unique and non-empty

set of neighbors in the subset. Sensors positioned at vertices of the OLD-set will detect and identify

disruptions in a network in a specific way. Such sensors can be expensive, and therefore it is vital

to reduce the size of the OLD-set. Formally the open-locating dominating set S for a graph G
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is the collection of vertices which dominates G, and for any vertices u, v ∈ V \S, the condition

S ∩ N(u) 6= S ∩ N(v) satisfies. The set S will be denoted as OLD-set. The smallest cardinality

of such a set is denoted as γold(G). If detector can distinguish an invader at N(u), without the

capability of detecting at u, then we examine open-locating dominating set as studied in [20], [21],

[6], [19].

A set S ⊆ V (G), of an undirected graph G = (V,E), is a dominating set S if for any vertex that

does not relate to S has some neighbors in S. The domination number γ(G) is the least size of

dominating set in G.

The application prompting this research is modeled using a dominating set of vertices in a graph

representing defenders at distinct places in a facility. In this case, we require one defender to get

to any un-protective vertex in one step and for a backup defender to be no more than two vertices

away.

Definition 1.1 A subset S ⊆ V , is a [g, h]-set if i ∈ V \S, g ≤ |N(i) ∩ S| ≤ h for positive integers

g, and h, the vertex i ∈ V \S is adjacent to at least g but no more than h vertices in S [7].

Definition 1.2 Let S be a subset of G, is a [1, 2]-set, if for some u ∈ V \S we have 1 ≤ |N(u)∩S| ≤ 2,

that is each vertex u ∈ V \S is adjacent to at least one but no more than two vertices in S. The

minimum cardinality of [1, 2]-set in G is called [1, 2]-domination number and is represented by

γ[1,2](G)[10], [11].

Definition 1.3 A S ⊆ V (G) is known as total dominating set if for each vertex v ∈ V , N(v)∩S 6= ∅.
The total domination number is least size of total dominating set S, it is denoted as γt(G).A total

dominating set S ⊆ V , is termed as total[1,2]-set if for any vertex x ∈ V \S, 1 ≤ |N(x)∩S| ≤ 2. The

total[1, 2]-domination of G, is the minimum cardinality of total[1, 2]-set, and is denoted as γt[1,2](G)

[14].

If S is a [1, 2]-set it is dominating as well, but a dominating may not be a [1, 2]-set implies γ[1,2](G) ≥
γ(G). For any graph G,

γ(G) ≤ γt(G) ≤ γt[1,2](G),

γ(G) ≤ γ[1,2](G) ≤ γt[1,2](G).

Definition 1.4 A S ⊆ V , is called independent if in a set S, no two vertices are adjacent. The inde-

pendent domination number i(G) is the cardinality of a minimum independent dominating set in G,

that is γ(G) ≤ i(G). Now with an additional property, a dominating set S is an independent[1, 2]-

set if 1 ≤ |N(j) ∩ S| ≤ 2, for every vertex j ∈ V \S. The minimum cardinality of a such a set is

called independent[1, 2]-number, denoted by i[1,2]|(G). The relation i(G) ≤ i[1,2](G) for every graph

admitting an independent[1, 2]-set. For further study on this parameter readers can see [9], and [1].

In studies involving safeguard implementations in graphical facilities models or multiprocessor net-

works, different types of security sets have been studied to precisely locate an "intruder" such as a
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thief, saboteur, or explosion, or defective processor. It is commonly believed that a system modeling

tool located at a vertex v can detect an intruder only if it is at v or a vertex location adjacent to

v in a graph G = (V,E). For any vertex x ∈ V , the set NG(x) = {v ∈ V |(x, y) ∈ E} is called the

open neighborhood of x. Moreover, NG[x] = NG(x) ∪ {x} is called the closed neighborhood of x.

Motivated by the above notion of [1, 2]-domination number, total [1, 2]-set, independent [1, 2]-set

we introduce the [1, 2]-open locating domination that is defined in a similar way as above different

parameters of domination are defined.

Definition 1.5 A set S ⊆ V , is termed as [1, 2]-open locating dominating set if for any vertices

u, v ∈ V \S, S ∩ N(u) 6= S ∩ N(v) satisfies, as well as for such vertices 1 ≤ |N(u) ∩ S| ≤ 2, and

1 ≤ |N(v)∩S| ≤ 2. The minimum cardinality of such a set is called [1, 2]-open locating domination

number and is denoted as γold[1,2](G). The relation holds γold[1,2](G) ≥ γold(G).

1 Known results for γold(G)

Some of the known results concerning the open-locating domination in a graph G are as follows;

Lemma 1. [20] For n ≥ 3, γold(Cn) = d2n3 e

Lemma 2. [20] For n ≥ 10, we have;

γold(Pn) =

{
4k + r, n = 6k + r r ∈ 0, 1, 2, 3, 4;
4k + 4, n = 6k + 5.

Lemma 3. [5] For a complete graph of order n, we have γold(Kn) = n− 1.

Lemma 4. [2] For n ≥ 10, and n ≥ 10, and n = 10f + h, and h ∈ {0, 1 . . . , 9} we have;

γold(P 2
n) ≤


4f + 1, if h ∈ 0, 1;
4f + 2, if h ∈ 2, 3;
4f + 3, if h ∈ 4, 5;
4f + 4, if h ∈ 6, 7, 8, 9;

Lemma 5. [2] For n ≥ 9, we have; dn3 e ≤ γ
old(C2

n) ≤ dn−22 e+ 1.

Theorem 1. [5],[20] Let G be a graph of order n and maximum degree ∆, then;

γold(G) ≥ 2n

∆ + 1
.

Let H be the graph as shown in 1. Now let S = {b, d, e, g, h}. Now we need to check the

intersections, N(a)∩S = {b}, N(b)∩S = {d},N(c)∩S = {b, e}, N(d)∩S = {b, g}, N(e)∩S = {h},
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N(f) ∩ S = {d, g}, N(g) ∩ S = {d, h}, N(h) ∩ S = {e, g}, and N(i) ∩ S = {e, h}. It can be

clearly seen that all the intersections are non-empty and distinct and as well as intersection of open

neighborhood of a vertex with the S contains at least one vertex and no more than two vertices.

Thus S is [1, 2]-open locating dominating set. Thus [1, 2] − OLD(H) = |S| = 5. This also shows

that γold[1,2](H) = γold(H).

Observation 1: A graph G has [1, 2]-open locating dominating set if and only if the minimum

a

b c

d e

f g h i

H:

Figure 1: [1, 2]-OLD set.

degree of a graph is δ ≥ 1, and for some vertices y 6= z, we have N(y) 6= N(z), also the intersection

of open neighborhood of these vertices with the set S ⊆ V (G), contains at least one and no more

than two vertices.

Observation 2: For a graph G, [1, 2]-OLD(G)=2, if and only G = K2,K3.

Proof: In order to prove let us assume S be an [1, 2]-OLD set for a graph G of size 2. Then it is

quite clear that the no vertex of S has external private neighbor in V (G)− S, and also it satisfies

the condition to be [1, 2]-OLD set.

In this next section we will find the [1, 2]-OLD number of cycle, path, and square of path and cycle

graphs, respectively.

2 Upper Bounds for γold[1,2]

2.1 Cycle graphs

Let Cn be the cycle graph. The vertices and edges of V (Cn) = {a0, a1, . . . , an−1}, and E(Cn) =

{a0a1, a1a2, . . . , an−1a0}. The cycle graph is a regular graph of degree 2.

Proposition 1. For n ≥ 6, we have

γold[1,2](Cn) =

{ ⌈
2n
3

⌉
, n ≡ 0, 2( mod 3);⌈

2n
3

⌉
+ 1, n ≡ 1( mod 3).
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The result for γold[1,2](Cn) is later used to find the upper bounds for different graphs of convex

polytopes.

Proof. In order to prove that we will establish a set S;

S =


{a3`+1, a3`+2 | ` = 0, ..., j − 1 n = 3j;

{a3`, a3`+1 ∪ {a3j−1, a3j}, | ` = 0, ..., j − 1 n = 3j + 1;

{a3`, a3`+1,∪{a3j , a3j+1} | ` = 0, ..., j − 1 n = 3j + 2;

The Table1 is presented which clearly shows that, S ∩N(a) 6= ∅, the intersection with the set S

is distinct as well as it can be clearly seen that 1 ≤ |N(a) ∩ S| ≤ 2. By the above construction one

n a ∈ V S ∩N(a) a ∈ V S ∩N(a)

3j a3`+1 {a3`+2} a3`+2 {a3`+1}
a3`+3(` = 0, . . . , j − 2) {a3`+2, a3`+4}(` = 0, . . . , j − 2) a0 {a1, a3j−1}

3j + 1 a3`+1(` = 0, . . . , j − 2) {a3`}(` = 0, . . . , j − 2) a3`+2 {a3`+1, a3`+3}
a3`+3 {a3`+4} a3j−2 {a3j−3, a3j−1}
a3j {a3j−1, a0} a0 {a1, a3j}

3j + 2 a3`+1 {a3`} a3`+2 {a3`+1, a3`+3}
a3`+3 {a3`+4} a0 {a1, a3j+1}
a3j+1 {a3j , a0}

Table 1: [1, 2]-OLD vertices in Cn.

can easily notice that S is [1, 2]-OLD set;

γold[1,2](Cn) ≤

{ ⌈
2n
3

⌉
, n ≡ 0, 2( mod 3);⌈

2n
3

⌉
+ 1, n ≡ 1( mod 3).

Now by lemma 1 we have γold(Cn) =
⌈
2n
3

⌉
. Now from the above facts for n ≡ 1(mod3), we have

γold[1,2](Cn) 6= γold(Cn). Let us assume on contrary we have γold[1,2](Cn) = γold(Cn), for n ≡ 1(mod3).

Let us assume set S = {a3`, a3`+1, a3j−1 | ` = 0, ..., j − 1}. We will encounter a3j−3 = a3j−1 =

{a3j−2}, which is a contradiction as the intersection of the open neighborhood of vertices with the

given set S are equivalent. Now we can present an improved result for the γold(Cn).

Theorem 2. For n ≥ 6, we have for the graph of Cn;

γold(Cn) =

{ ⌈
2n
3

⌉
, n ≡ 0, 2( mod 3);⌈

2n
3

⌉
+ 1, n ≡ 1( mod 3).
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2.2 Path Graphs

The [1, 2]-OLD number of path graph Pn can be computed in a similar way; and from [20] , and by

Theorem 1 we have γold(Pn) = d2n3 e; so we can write the following result for [1, 2]-OLD number of

Pn as;

Theorem 3. For n ≥ 6, we have

γold[1,2](Pn) = γold(Pn) =

⌈
2n

3

⌉
The square of a graph G = (V,E), is the graph G = (V,E′), where E′ = E ∪ {xy : d(x, y) = 2}.

Now we calculate the [1, 2]-open locating domination number for square of a path and cycle graphs

respectively.

2.3 Square of Path Graphs

Now it is not so hard to check that γold[1,2](P
2
5 ) = 3, γold[1,2](P

2
6 ) = +∞, and when n = 7, 8, 9, we have

γold[1,2](P
2
n) = 4,

Theorem 4. For n ≥ 10, we have

γold[1,2](P
2
n) ≤

{ ⌈
2n
5

⌉
+ 1, when n ≡ 0, 2, 3, 4, 5, 6(mod10);⌈

2n
5

⌉
when n ≡ 1, 8, 9(mod10).

Proof. In order to prove that we will establish a set S;

S =



{u10`, u10`+2, u10`+4, u10`+6} ∪ {u10j−2} | ` = 0, ..., j − 1 n = 10j;

{u10`+1, u10`+3, u10`+5, u10`+7} ∪ {u10j−1} | ` = 0, ..., j − 1 n = 10j + 1;

{u10`, u10`+2, u10`+4, u10`+6} ∪ {u10j}, {u10j+1} | ` = 0, ..., j − 1 n = 10j + 2;

{u10`+1, u10`+3, u10`+5, u10`+7} ∪ {u10j+1}, {u10j+2} | ` = 0, ..., j − 1 n = 10j + 3;

{u10`+, u10`+2, u10`+4, u10`+6} ∪ {u10j−2}, {u10j+2}, {u10j+3} | ` = 0, ..., j − 1 n = 10j + 4;

{u10`+1, u10`+3, u10`+5, u10`+7} ∪ {u10j−1}, {u10j+3}, {u10j+4} | ` = 0, ..., j − 1 n = 10j + 5;

{u10`, u10`+2, u10`+4, u10`+6} ∪ {u10j−2}, {u10j}, {u10j+4}, {u10j+5} | ` = 0, ..., j − 1 n = 10j + 6;

{u10`+1, u10`+3, u10`+5, u10`+7} ∪ {u10j−1}, {u10j+1}, {u10j+3}, {u10j+5} | ` = 0, ..., j − 1 n = 10j + 7;

{u10`, u10`+2, u10`+4, u10`+6} ∪ {u10j}, {u10j+2}, {u10j+4}, {u10j+6} | ` = 0, ..., j − 1 n = 10j + 8;

{u10`+1, u10`+3, u10`+5, u10`+7} ∪ {u10j+1}, {u10j+3}, {u10j+5}, {u10j+7} | ` = 0, ..., j − 1 n = 10j + 9.

For 2, 3, 4, 5, 6, 7, 8, 9(mod10) only those representation are presented in the next table which

differs from the above table.

The Tables 2(a),2(b) indicates that there are no vertices in graph with S∩N(u) =∞, as well as

the intersection with the set S is distinct, and 1 ≤ |N(u) ∩ S| ≤ 2.Finally, computational evidence

encourages us to conjecture that Theorem 4 in fact gives the exact values for γold[1,2](P
2
n). Note that
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n u ∈ V S ∩N(u) u ∈ V S ∩N(u)

10j u10` {u10`+2} u10`+1 {u10`, u10`+2}
u10`+2 {u10`, u10`+4} u10`+3 {u10`+2, u10`+4}
u10`+4 {u10`+2, u10`+6} u10`+5 {u10`+4, u10`+6}

u10`+6|` = 0, . . . , j − 2 {u10`+4}|` = j − 2 u10`+7|` = 0, . . . , j − 2 {u10`+6}` = 0, . . . , j − 2

u10`+8|` = 0, . . . , j − 2 {u10`+6, u10`}|` = 0, . . . , j − 2 u10`+9|` = 0, . . . , j − 2 {u10`}|` = 0, . . . , j − 2

u10j−4 {u10j−6, u10j−2} u10j−3 {u10j−4, u10j−2}
u10j−2 {u10j−4} u10j−1 {u10j−2}

10j + 1 u10` {u10`+1} u10`+1 {u10`+3

u10`+2 {u10`+1, u10`+3} u10`+3 {u10`+1, u10`+5}
u10`+4 {u10`+3, u10`+5} u10`+5 {u10`+3, u10`+7}
u10`+6 {u10`+5, u10`+7} u10`+7|` = 0, . . . , j − 2 {u10`+5}` = 0, . . . , j − 2

u10`+8|` = 0, . . . , j − 2 {u10`+7}|` = 0, . . . , j − 2 u10`+9|` = 0, . . . , j − 2 {u10`+7, u10`+11}|` = 0, . . . , j − 2

u10j−3 {u10j−5, u10j−1} u10j−2 {u10j−3, u10j−1}
u10j−1 {u10j−3} u10j {u10j−1}

Table 2(a): [1, 2]-OLD vertices in (P2
n).

every γold[1,2](G) is an open-locating dominating set γold(G), but the converse is not true for every

graph. Next we shown that a complete graph Kn on n vertices do not have open-locating[1, 2]

dominating set.

Note that every γold[1,2](G) is an open-locating dominating set γold(G), but the converse is not true

for every graph.

2.4 Square Of Cycle Graphs

The squared cycle graph C2
n is a regular graph of degree 4. The vertex set is V (C2

n) = {v0, v1, . . . , vn−1}.
The squared cycle graph is also a special case of Harary graph H(r, s), with r = 4. It is straight

forward to check that γold[1,2](C
2
5) = +∞, γold[1,2](C

2
6) = +∞, γold[1,2](C

2
7) = +∞, γold[1,2](C

2
8) = +∞,

γold[1,2](C
2
9) = +∞, γold[1,2](C

2
10) = 4, γold[1,2](C

2
11) = +∞

Theorem 5. For γold[1,2](C
2
n), n ≥ 12, we have

γold[1,2](C
2
n) ≤

{ ⌈
n−2
2

⌉
, if n ≡ 0, 1, 2(mod4) ;

+∞ otherwise.

Proof. In order to prove that we will establish a set S;

S =


{v4`+1, v4`+3} ∪ {v4j−3} | ` = 0, ..., j − 2 n = 4j;

{v4`+1, v4`+3} ∪ {v4j−3}, {v4j−1} | ` = 0, ..., j − 2 n = 4j + 1;

{v4`+1, v4`+3} ∪ {v4j−3}, {v4j−1} | ` = 0, ..., j − 2 n = 4j + 2;

{v4`+1, v4`+3} ∪ {v4j−3}, {v4j−1}, {v4j+1} | ` = 0, ..., j − 2 n = 4j + 3;

The Table 3 consider four cases. As it can be clearly seen that for the cases n = 4j, n = 4j + 1,

n = 4j+2, all the intersection of the vertices in the graph with the set S are non-empty and distinct

as well as 1 ≤ |N(v) ∩ S| ≤ 2. But the for the case n = 4j + 3, this property is not satisfied.
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n u ∈ V S ∩N(u) u ∈ V S ∩N(u)

10j + 2 u10`+6 {u10`+4} u10`+7 {u10`+6}
u10`+8 {u10`+6, u10`} u10`+9|` = 0, . . . , j − 2 {u10`}|` = 0, . . . , j − 2

u10j−1 {u10j , u10j+1} u10j+1 {u10j}
10j + 3 u10`+7 {u10`+5} u10`+8 {u10`+7}

u10`+9 {u10`+7, u10`+11} u10j {u10j+1, u10j+2}
u10j+1 {u10j+2} u10j+2 {u10j+1}

10j + 4 u10j {u10j−2, u10j+2} u10j+1 {u10j+2, u10j+3}
u10j+2 {u10j+3} u10j+3 {u10j+2}

10j + 5 u10j+1 {u10j−1, u10j+3} u10j+2 {u10j+3, u10j+4}
u10j+3 {u10j+4} u10j+4 {u10j+3}

10j + 6 u10`+8 {u10`+6, u10`} u10j−1 {u10j−2, u10j}
u10j {u10j−2} u10j+1 {u10j}
u10j+2 {u10j , u10j+4} u10j+3 {u10j+4, u10j+5}
u10j+4 {u10j+5} u10+5 {u10j+4}

10j + 7 u10j {u10j−1, u10j+1} u10j+1 {u10j−1, u10j+3}
u10j+2 {u10j+1, u10j+3} u10j+3 {u10j+1, u10j+5}
u10j+4 {u10j+3, u10j+5} u10j+5 {u10j+3}
u10j+6 {u10j+5}

10j + 8 u10`+6 {u10`+4} u10`+7 {u10`+6}
u10`+8 {u10`+6, u10`} u10`+9 {u10`}
u10j {u10j+2} u10j+1 {u10j , u10j+2}
u10j+2 {u10j .u10j+4} u10j+3 {u10j+2, u10j+4}
u10j+4 {u10j+2, u10j+6} u10j+5 {u10j+4, u10j+6}
u10j+6 {u10j+4} u10j+7 {u10j+6}

10j + 9 u10`+7 {u10`+5} u10`+8 {u10`+7}
u10`+9 {u10`+7, u10`+11} u10j {u10j+1}
u10j+1 {u10j+3} u10j+2 {u10j+1, u10j+3}
u10j+3 {u10j+1, u10j+5} u10j+4 {u10j+3, u10j+5}
u10j+5 {u10j+3, u10j+7} u10j+6 {u10j+5, u10j+7}
u10j+7 {u10j+5} u10j+8 {u10j+7}

Table 2(b): [1, 2]-OLD vertices in (P2
n).
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n v ∈ V S ∩N(v) v ∈ V S ∩N(v)

4j v0 {v1} v1 {v3}
v4`+2 {v4`+1, v4`+3} v4`+3 {v4`+1, v4`+5}
v4`+4 {v4`+3, v4`+5} v4`+5 {v4`+3, (v4`+7)|` = 0, . . . , j − 3}
v4j−2 {v4j−3} v4j−1 {v4j−3, v1}

4j + 1 v0 {v1} v1 {v3}
v4`+2 {v4`+1, v4`+3} v4`+3 {v4`+1, v4`+5}
v4`+4 {v4`+3, v4`+5} v4`+5 {v4`+3, (v4`+7)}
v4j−2 {v4j−3, v4j−1} v4j−1 {v4j−3}
v4j {v4j−1, v1}

4j + 2 v0 {v1} v1 {v3}
v4`+2 {v4`+1, v4`+3} v4`+3 {v4`+1, v4`+5}
v4`+4 {v4`+3, v4`+5} v4`+5 {v4`+3, (v4`+7)}
v4j−2 {v4j−3, v4j−1} v4j−1 {v4j−3}
v4j {v4j−1} v4j+1 {v4j−1, v1}

4j + 3 v0 {v1, v4j+1, v4j+2} v1 {v3}
v4`+2 {v4`+1, v4`+3} v4`+3 {v4`+1, v4`+5}
v4`+4 {v4`+3, v4`+5} v4`+5 {v4`+3, (v4`+7)}
v4j−2 {v4j−3, v4j−1} v4j−1 {v4j−3, v4j−1}
v4j {v4j−1, v4j+1, v4j+2} v4j+1 {v4j−1, v4j+2}
v4j+2 {v4j+1, v1}

Table 3: [1, 2]-OLD vertices in (C2n).

41



International Journal of Advancements in Mathematics 2 (1) 2022. 33-49

Finally, computational evidence encourages us to conjecture that Theorem 5 in fact gives the

exact values for γold[1,2](C
2
n).

3 Exact Values

3.1 [1, 2]-open locating domination number P (n, k)

The introduction of generalized Petersen graphs was done by Watkins[24]. The P (n, k), where

n ≥ 3, and 1 ≤ k ≤ bn−12 c, is the cubic graph consist of vertices and edges.

V(P (n, k) = {a0, a1, . . . , an−1, b0, b1, . . . , bn−1}

E(P (n, k) = {aiai+k, bibi, bibi+1|i = 0, 1, . . . , n− 1}

Recently [8] calculated the γ[1,2](P (n, k))|k∈1,2,3, and proved that γ[1,2](P (n, k)) = γ(P (n, k))k∈1,3,

and also γ[1,2](P (n, k)) 6= γ(P (n, k))k=2, except for n = 6, 7, 9, 12. So motivated by this we calcu-

lated γold[1,2](P (n, k)), as shown in the following theorem.

Theorem 6. For n ≥ 6, the γold[1,2](P (n, k)) is given as;

γold[1,2](P (n, k)) = n

Proof. Let us construct a set S of P (n, k), now S = {b`|` = 0, 1, . . . , n−1}. Now the following table

is presented; The table clearly there are no vertices in a graph with the empty set and intersection

v S ∩N(v)

b0 {b1, bn−1}
b1 {b0, b2}
b` {b`−1, b`+1|`=2,3,...,n−1}
a` {b`}|`=0,1,...,n−1}

Table 4: [1, 2]-OLD vertices in P (n, k).

of the vertices of a graph with the set S are distinct as well, and the condition 1 ≤ |S ∩N(v)| ≤ 2

implying that,

γold[1,2](P (n, k)) ≤ n

Now on the other hand we have γold[1,2](G) ≥ γold(G), and we know the fact that generalized Petersen

graph is a graph with each vertex of degree 3, with 2n vertices so by using Theorem1, the open-

locating domination number can be calculated. Combining all these we can say that;

γold[1,2](P (n, k)) = γold(P (n, k)) = n
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3.2 [1, 2]-open locating domination number of Convex Polytopes

The graph of convex polytope Dn, consist of 2n 5-sided faces and a pair of n-sided faces, as shown

in Figure 2. The open locating domination number of Dn was considered in [19]. Motivated by this,

in this paper, we found [1, 2]-open locating domination number of already studied classes of convex

polytopes. We gave the exact values of [1, 2]-open locating domination number, of three further

variations of the Dn graph. These are Rn,[16] in which they studied the vertex-magic total labelling

of Rn. Imran et al. [13] studied the minimum metric dimension problem. The graph of Hn and H ′n,

is studied in [17], where the binary locating dominating number is calculated. By using Theorem 1,

for open-locating dominating number we see that for these particular families of convex polytopes,

γold[1,2](G) = γold(G). For other families of convex polytopes, their upper bounds are presented. The

Figure 2: The graph of convex polytope Dn.

authors in [19] found the open locating dominating number of Dn, and proved that,

Theorem 7. [19]For n ≥ 6, the open-locating domination number is;

γold(Dn) = 2n

3.3 Convex polytope Rn

The graph of convex polytope Rn constitutes of 2n 5-sided faces, n6-sided faces, and n-sided faces,

as studied in Miller et al. [16]. The vertex and edge set comprises of;

V (Rn) = {a`, b`, c`, d`, e`, f` | ` = 0, . . . , n− 1};

E(Rn) = {a`a`+1, a`b`, b`c`, b`c`−1, c`d`,

d`e`, d`e`+1, e`f`, f`f`+1 | ` = 0, . . . , n− 1}.

Theorem 8. For n ≥ 6, we have;

γold[1,2](Rn) = 3n
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Figure 3: Convex polytope Rn.

v S ∩N(v)

a` {a`−1, a`+1}
b` {a`}
c` {d`}
d` {e`, e`+1}
e` {d`−1, d`}
f` {e`}

Table 5: [1, 2]-OLD vertices in Rn.

Proof. In order to prove that let use consider S = {a`, d`, e`|` = 0, 1, . . . , n − 1}. Now a table is

given; It can be seen from above that these intersections are non-empty as well as distinct. The

other condition also satisfies as we can see that for some vertex which is in set S, as well as not

in S, the intersection of open neighborhood of vertices with the set S comprises of at least one

and no more than two vertices. This fact is also clear from the table. So S is [1, 2]-OLD set f

Rn. So |S| = 3n, γold[1,2](Rn) ≤ 3n. On the other hand γold[1,2](Rn) ≥ γold(Rn) and by Theorem 1

γold(Rn) ≥
⌈
2.6n
3+1

⌉
= 3n. So from all the above facts; γold[1,2](Rn) = γold(Rn) = 3n.

3.4 Convex polytope Hn

The graph of convex polytope Hn, as studied in[17] where the binary locating domination number

is considered. For the sake of simplicity we present vertex and edge set of Hn as,

V (Hn) = {a`, b`, c`, d`, e`, f`, g`, h` | ` = 0, . . . , n− 1};

E(Hn) = {a`a`+1, a`b`, b`c`, b`c`−1,

c`d`, d`e`, d`e`+1, e`f`, f`g`,

f`g`−1, g`h`, h`h`+1 | ` = 0, 1, . . . , n− 1.}
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Figure 4: Convex polytope Hn.

Theorem 9. For n ≥ 8, we have;

γold[1,2](Hn) = 4n

Proof. In order to prove that let use consider S = {a`, d`, e`, h`|` = 0, 1, . . . , n − 1}. Now a table

is shown; It can be seen from the table that these intersections are non-empty as well as distinct.

v S ∩N(v)

a` {a`−1, a`+1}
b` {a`}
c` {d`}
d` {e`, e`+1}
e` {d`−1, d`}
f` {e`}
g` {h`}
h` {h`+1, h`−1}

Table 6: [1, 2]-OLD vertices in Hn.

The other condition also satisfies as we can see that for some vertex which is in set S, as well as not

in S, the intersection of open neighborhood with the set S comprises of at least one and no more

than two vertices.This fact is also clear from the table. So S is [1, 2]-open locating dominating set

of Hn. So |S| = 4n, γold[1,2](Hn) ≤ 4n. On the other hand γold[1,2](Hn) ≥ γold(Hn) and by Theorem 1

γold(Hn) ≥
⌈
2.8n
3+1

⌉
= 4n. From all these above facts; γold[1,2](Hn) = γold(Hn) = 4n.

3.5 Convex polytope H ′n

The graph of convex polytope H ′n, as studied in[17] where the binary locating domination number

is considered. For the sake of simplicity we present vertex and edge set of H ′n as,

V (H ′n) = {a`, b`, c`, d`, e`, f`,

g`, h`, i`, j`, k`, l`|` = 0, . . . , n− 1}
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and the edge set

E(H ′n) = {a`a`+1, a`b`, b`c`, b`c`−1, c`d`, d`e`,

d`e`+1, e`f`, f`g`, f`g`−1, g`h`, h`i`,

h`i`+1, i`j`, j`k`, j`k`−1,

k`l`, l`l`+1 | ` = 0, 1, . . . , n− 1}.

Figure 5: Convex polytope H ′n.

Theorem 10. For n ≥ 8, we have;

γold[1,2](H
′
n) = 6n

Proof. In order to prove that let use consider S = {a`, d`, e`, h`, i`, l`|` = 0, 1, . . . , n − 1}. Now we

present a table; It can be seen from above that these intersections are non-empty as well as distinct.

The other condition also satisfies as we can see that for some vertex which is in set S, as well as not

in S, the intersection of open neighborhood with the set S comprises of at least one and no more

than two vertices.This fact is also clear from the table. So S is [1, 2]-open locating dominating set

of (H ′n). So |S| = 6n, γold[1,2](H
′
n) ≤ 6n. On the other hand γold[1,2](H

′
n) ≥ γold(H ′n) and by Theorem 1

γold(H ′n) ≥
⌈
2.12n
3+1

⌉
= 6n. Combining all these we get; γold[1,2](H

′
n) = γold(H ′n) = 6n.

We studied three families of convex polytopes which are actually the extension of the graph

of convex polytope Dn, and we conjecture that these are the exact values of [1, 2]-open locating

domination number.
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v S ∩N(v)

a` {a`−1, a`+1}
b` {a`}
c` {d`}
d` {e`, e`+1}
e` {d`−1, d`}
f` {e`}
g` {h`}
h` {i`, i`+1}
i` {h`−1, h`}
j` {i`}
k` {l`}
l` {l`−1, l`+1}

Table 7: [1, 2]-OLD vertices in H′n.

4 Conclusion

In this paper, we initiated the study of [1, 2]-open locating domination number of graphs. The study

of [1, 2]-set in graphs, [1, 2]-domination number, Total[1, 2]-domination, as well other studies related

to these topics is the cause of this study. We calculated the [1, 2]-open location domination number

of cycle, sqaure of cycle and path respectively as well as studied the generalized petersen graph

G(P (n, k)), and the graphs of convex polytopes, which are an essential class of graphs from both

geometric and combinatorial viewpoint. The further study can be directed towards finding [1, 2]-

open locating domination of other well-considered graphs. It would be interesting to find [1, 2]-set

in the trees and finding the bounds and characterizing the trees that possess [1, 2]-sets. Recently

different domination parameters have been studied for the classes of convex polytopes, so further

research can be carried out for those parameters which exhibit the exact values among these families

of graphs.
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